Principles and Techniques

of Natural Language Parsing : A Tutoffa]

Keh-Yih Su
ALK

o National Tsing Hua University

CINVACE YN

Proceedings of ROCLING I1(1988)
R.0.C. Computational Linguistics Workshops I pp 55-61

FERRE—BHEESEMHERE 561 B

Principles and Techniques of Natural
Language Parsing : A Tutorial

Keh-Yih Su

Department of Electrical Engineering
National Tsing-Hua University
Hsinchu, Taiwan, R.O.C.

Abstract

To be able to parse sentences successfully is a preliminary requirement of a natural lan-
guage processing system. Therefore, parser is a very important part of a natural language
processing system. This paper will discuss the typical procedure of natural language process-
ing; examine the difference between the natural and the artificial languages; list the criterions
for designing a natural language parser; and take a look at various parsing strategies along with
some commonly used parsing algorithms employed in natural language processing system.
Finally, some helpful tips on building a natural language processing system will be provided.

Introduction

After the computer was invented, people soon discover that natural language processing
would be an important field for the non-numerical application of computer. In a natural
language processing system, to parse sentences successfully is very important. Therefore,
this paper will address this problem in the following sections. In section 2, the typical
procedure and problem of processing the natural language will be presented. In section 3, we
will take a look at the differences between artificial language and natural language. In section
4, several criterions are listed for designing a parser for doing natural language processing.
In section 5 and 6, we will survey various parsing strategies and parsing algorithms available
(they will not be discussed in detail because of the length limitation of this paper). Lastly,
we will give some helpful tips for building a natural language processing system based on
the experience we had gained from our on-going project on an English to Chinese machine
translation system.

Before we discuss the issues of parser in a natural language processing system, we would
like to define some terms first in the context of the natural language processing to familiarize
the reader with the field. They are languages, researchers and natural language processing.

Languages can be classified as : natural languages, artificial languages, sublanguages and
controlled languages. Natural languages are languages like Chinese and English. Artificial
languages are languages used in programming like Fortran, Basic and C. Sublanguages
are subsets of a language abstracted from a restricted domain (e.g. Computer Science or
Linguistics). Controlled languages, which can be further divided into weakly controlled and

‘strongly controlled, are languages that are intended to restrict the speaker to use them in a
rigid form in order to decrease the degree of handling difficulty.

On the other hand, researchers in natural language processing can be classified into three
types according to their research interest. They are theoretical linguists who are interested in

—57 —

linguistic phenomena in general; computational linguists who are more application oriented
and interested in domain or language specific linguistic phenomena; and language engineers
who are interest in providing friendly working environment to support the work of the
‘computational linguists [NAGA 88]. :

As for the natural language processing, it can be separated into three types. The first is the
analysis process which takes in strings in natural language and turns them into logic semantic
form. The second is the generation process which takes logic semantic form and turns it into
natural language strings. The third is the understanding process of a natural language which
would take in strings in natural language and turn them into logic semantic form and then it
is capable to answer questions in natural language form [ALLE 87][GROS 86].

The Typical Procedure of Natural Language Processing

A typical procedure of transforming sounds into meaningful logic semantic form in natural
language processing can be separated into phonetic and phonological analysis, morphological
analysis, lexical analysis, syntactic analysis, semantic analysis and discourse analysis. In page
17 of [WINO 83], the connecting relationship between analysis phases is clearly depicted
along with the input and output requirements of every phase.

These analysis phases can be combined into several passes in different ways. For example,
in a one pass translator, lexical analysis, syntactic analysis, semantic analysis are combined
along with the code generator into one single pass (syntax directed translation). In this case,
the source program is traversed once and resulting code is generated immediately. As another
approach, we can separate these analysis phases into different passes by incorporating one
or more phases into one pass.

Natural language processing is a complex task. The most troubling problems in the task
are the ambiguity and the ill-formedness of the sentences. Ambiguity can be divided into
lexical ambiguity (multiple categories), syntactic ambiguity (several possible structures for a
given sentence), semantic ambiguity and pragmatic ambiguity [HIRS 87][GODB 82] . Some
examples are given below :

1. Lexical Ambiguity : Design Can be either a noun or a verb.
Syntactic Ambiguity : He saw a man with a telescope.

a. He saw the man through a telescope (with ’a telescope’ modifying the verb ’saw’
), or ,

b. He saw a man who had a telescope with him (with ’a telescope’ modifying the
noun 'man’).

3. Semantic Ambiguity : Police were ordered to stop drinking by midnight.

a. Every policeman must not drink (implying liquor) after midnight, or
b. Police must stop people from drinking beyond midnight.

4. Pragmatic Ambiguity : It is cold in here.

a. If the speaker is in a very cold room, this sentence might mean that he wishes the
heater be turned higher. (indirect speech)

b. If the speaker is under a hot sun, he might mean that he wants to enter the cool
room. (direct speech)

— 58 —

The other trouble spot is the ill-formed sentences. This can also be subdivided into lexical,
syntactic, semantic and pragmatic ill-formedness [GODB 82][NIRE 87]. some examples of
these are :

1. Lexical Ill-formedness : Typing error recoverable by human but not by computer.
Syntactic Ill-formedness : Which Seven ? Which is ungrammatical but still understand-
able by human who read the sentences before this one.

3. Semantic Ill-formedness : A red apple is walking on the street. This sentence is
semantically ill-formed because apple does not walk. But, a human would accept
it if this sentence is from a children’s book. _

4. Pragmatic Ill-formedness : How are you? It is very sunny outside. The conversation is
pragmatically ill-formed because the answer does not match with that of the question.

The Difference Between Artificial Language and Natural Language

Because the parser commonly used for natural language processing system is usually
evolved from the parser for artificial languages, therefore we must take a look at the differences
between natural language and artificial language in order to know why and how the parser for
the artificial language must be changed. The main difference between artificial languages and
natural languages is that artificial language has small vocabulary, and usually has a simple
context-free grammar, and does not change often. In addition, artificial language does not
need any morphological analysis and does not have any ambiguity in syntactic category,
parse tree or semantic interpretation. Also, every accepted sentence in artificial language can
be parsed deterministically and never is ill-formed. These sentences also are rarely context
dependent so in general they do not need discourse analysis. Because of all these reasons,
if we want to utilize the parser designed for programming language to do the parsing for
sentences in natural language, it must be augmented first.

Criterions for Designing a Natural Language Parser

~ There are several criterions that need to be carefully considered in designing a natural
language parser. The first criterion is the cost of the designing, which can be lowered by
using well-established theories and tools currently available.

The second criterion is the execution efficiency. There are several ways for improving
the runtime efficiency. One is to use parsing algorithm that has small branching factor, which
means there will be less paths to try and thus less states that need to be checked. If wrong
paths are abandoned as early as possible, the runtime efficiency will also be improved. But
how early will depend on the lookahead capability of the parsing algorithm. It is also better to
employ chart parsing concept [WINO 83] and the idea of having several logical paths sharing
a physical path [TOMI 87] to avoid redundant parsing. Another efficiency-improving method
is to have several logical subtrees sharing the same physical subtree to avoid unnecessary

.copying of subtrees. And lastly, score can be used to do predictive state space search and
thus reduce the size of the search space. '

The third criterion is to have a small memory space requirement. This can be done
by choosing a suitable parsing algorithm and by sharing the physical structures of subtrees.
In general, a bottom-up parsing algorithm will require large memory space, and the more

-59 —

lookahead there is the more memory will be required. As for sharing of subtree structures,
the basic idea behind it is to remove the empty entries and compact the data storage area.

The fourth criterion is the power of the parser. There are several factors that require
close examination under this criterion.

e Linguistic felicity: whether the linguists can describe their knowledge with only a few

statements.

Expressiveness: what class of knowledge can be incorporated into the system.

Handling of Ambiguity: whether the parser can select the most likely one.

Handling of inexact knowledge: whether the uncertainty can be added into rules.

Handling of ill-formed sentence: whether such construct can be elegantly handled via

Fail-Soft or some sort of Error Recovery (According to the report of Eastman and

McLean, 1981, - 26.7% of English queries are ill-formed [EAST 81]).

e Error diagnostic: the ability to pinpoint the error and the reason of the error to speed
up the debugging time.

The fifth criterion is the portability. This issue includes (i) porting of parser between
different computer systems, like from PC to SUN micros; (ii) or changing of the rules in the
underlying grammar; (iii) or changing of the source or target languages in the system (e.g.
translating of English to Chinese is changed into from Japanese to English); (iv) or changing
of the grammar formalism used as the system’s underlying grammar (e.g. from GPSP to
LFG). The problem of portability is also closely dependent on what the system architecture
is, which programming language is employed and how modular the system is.

The sixth criterion is the maintainability. This means that the system should be modular;
modifications to knowledge base should be incremental; documentations should be kept and a
good programming style should be strongly enforced in order to achieve easy maintainability.

Above are some of the basic criterions for designing a natural language parser. In an
actual implementation, the requirement for these criterions will vary for different applications.
Therefore, there will be compromise between these criterions.

Various Parsing Strategies

Parsing strategies can be classified into different categories according to different points
of view. Due to the length limit of this paper, we will just list them along with references.

Parsing strategies based on different driving mechanisms : 1. Template Matching
[NIRE 87], 2. Lexicon Oriented [NIRE 87], 3. Syntax Oriented [NIRE 87], 4. Semantic
Oriented [WINS 84] and 5. Mixed [NIRE 87].

Parsing strategies based on syntax tree constructions : 1. Top-Down (Expectation
driven, or Hypothesis driven) [AHO 72], 2. Bottom-Up (Data driven) [AHO 72] and 3.
Mixed (usually uses subgrammar) [MARC 80][SU 87].

Parsing strategies based on path traversal : 1. Backtracking [AHO 72], 2. Parallel
(requires large memory space) [AHO 72] and 3. Mixed (parallel with smaller subtrees)
[YONZ 88].

— 60 —

Parsing strategies based on goal state searching algorithm : 1. basic path searching
algorithm [WINS 84] : a) Depth-First, b) Breadth-First, c) Hill-Climbing, d) Best-First and
¢) Beam 2. Optimal path searching algorithm [WINS 84] : a) British Museum, b) Branch
and Bound, c) Dynamic Programming and d) A*. '

Parsing strategies based on branching [AHO 72] : 1. Deterministic Parsing (with
lookahead buffer) and 2. Nondeterministic Parsing.

For an unambiguous grammar, a nondeterministic parser can be converted into a deter-
ministic parser if the look ahead is far enough.

Parsing strategies based on different input sentence scanning [WINS 84] : 1. Left
to Right, 2. Right to Left and 3. Middle out.

Which is better will depend on the predictability of the sentence in the scanning direction.
The one with less entropyis the better one to use.

Parsing strategies that avoids redundant parsing : 1. Chart Parsing [WINO 83] and
2. Merge Logic Path [TOMI 87]. :

Some Well-Known Parsing Algorithm

Some of the well-known parsing algorithm used in natural language processing are : 1.
LR [AHO 72], 2. Left Corner [AHO 72], 3. ATN [WINO 83], 4. C.Y.K. [AHO 72], 5.
Earley [AHO 72], 6. Marcus (lookahead buffer & rule packet) [MARC 80] and 7. Tomita
[TOMI 87].

Some Tips in Building up a Natural Language Processing System

After surveying the basic issues in natural language processing system, following are
some tips for building a natural language processing system. These tips are based on the
experience we had gained from our machine translation project.

e First, if you do not have the experience of building up a similar system before, try
to build a small pilot system to begin with in order to gain the essential hands-on
experiences.

e Second, since this is an interdiscipline research, communication problems may arise
between the linguist and the computer/software engineers.

e Third, because while building a large system, it is likely to become an engineering
problem, so the guidelines from the software engineer should be closely followed.

o Fourth, it is better to do what you think is proper instead of rigidly following the theory
in the books. You should also take precautions in employing theories that are still
under debate.

Fifth, execution efficiency and portability of the system is very important.
Sixth, when tradeoffs are being weighted between quality, speed and memory space,
you should foresee the progress in the computer systems.

e Seventh, you should maintain a test file for doing “regression test” and “time test”
when modifying your system.

—61 —

¢ Eighth, the development of both system and the environment (or tools) should be done
at the same time.

Conclusions

In a natural language processing systems, parser plays an important role and has a large
influence on the performance of the system. Although research in parsing mechanism has a

. very long and fruitful history, it is still an active research domain.

Acknowledgment
V‘Special thanks to Mei-Hui Su for reorganizing the tutorial notes into this paper.

‘References

- [AHO 72] Aho, Alfred V. and Jeffrey D. Ullman, 1972, The Theory of Parsing, Translation, and Compiling,
" Vol. ‘1: parsing, Prentice-Hall, Englewood cliffs, N.J.

[AHO 86] Aho, Alfred V., Ravi Sethi and Jeffrey D. Ullman, 1986, Compilers : Principles, Techniques,
and Tools, Addison-Wesley, Reading, Mass.

_ " [ALLE 87] Allen, James, 1987, Natural Language Processing, Benjamin/Cummings Publishing, Menlo
Park, Ca

[EAST 81] Eastman, C.M. and D.S. McLean, 1981, "On the Need for Parsing Ill-formed Input,” American
Journal of Computational Linguistics, Vol. 7, No. 4, PP. 257.

_ [GODB 82] Godby, CJ., R. Wallace and C. Jolley, 1982, Language Files, Dept. of Linguistics, The Ohio
State University, Ohio.

[GORS 86] Gorsz, B.J., K.S. Jones and B.L. Webber, ed., 1986, Readings in Natural Language Processing,
Morgan Kaufmann Publishers, Los Altos, Calf.

[HIRS 87] Hirst, Graeme, 1987, Semantic Interpretation and the resolution of ambiguity, Universtiy Press,
Cambndge Great Britain.

[HUTC 86] Hutchins, W.J., 1986, Machine Translation: Past, Present, Future, Ellis Horwood Limited,
West Sussex, England.

- [MARC 80] Marcus, Mitchell P., 1980, A Theory of Syntactic Recogmaon for Natural Language, MIT
Press, Cambridge, Mass.

[NAGA 88] Nagao, Makoto, Panel Organizer, 1988, “Language Engmeermg The Real Bottle Neck of
Natural Language Processing,” Proceedings of the 12th international conference on Computational Linguistics,
Vol. 2, PP. 448453,

[NIRE 87] Nirenburg, Sergei, ed., 1987, Machine Translation, Cambridge University Press, Cambridge,
Great Britain. '

[SU *~ 87] Su, K.Y., J.S. Chang and H.H. Hua, 1987, “A powerful Language Processing System for
English-Chinese Machine Translation,” Int. Conf. of Chinese and Oriental Language Computing, Chicago, ILL.
PP. 260-264.

[TOMI 87] Tomita, Masaru, "An Efficient Augmented-Context-Free Parsing Algorithm”, Computational
Linguistics, Vol. 13, No. 1-2, Jan.-Jun. 1987. PP. 31-46.

[WINO 83] Winograd, Terry, 1983, Language as a Cognitive Process. Addison-Wesley, Reading, Mass.

[WINS 84] Winston, Patrick Henry, 1984, Arrificial Intelligence. Addison-Wesley, Reading, Mass. -

[WEIS 83] Weischedel, R.M., N.K. Sondheimer, 1983, "Meta-rule as a Basis for Processing Ill-Formed
Input,” American Journal of Computational Linguistics, Vol. 9, No.3-4, July-December 1983. PP. 161-177.

[YONE 88] Yonezawa, Akinori and Ichiro Ohsawa, 1988, "Object-Oriented Parallel Parsing for Context-
Free Grammar,” Proceedings of the 12th international conference on Computational Linguistics, Vol. 2, PP,
773-7178.

—62 —

