JAUNT: A Constraint Solver for
Disjunctive Feature Structures

Hiroshi Maruyama
IBM Research, Tokyo Research Laboratory
maruyama@trl.vnet.ibm.com

June 14, 1991

Abstract

Some of the modern linguistic theories, such as LFG and unification-
based grammars with disjunctions, require an NP-complete process
for their analysis. Solving such hard problems efficiently is crucial
to the realization of a practical system based on these theories. We
have developed a constraint solver named JAUNT for solving various
NP-complete problems encountered in the natural language process-
ing field. This paper describes the design and the implementation of
JAUNT. JAUNT is not only a constraint solver but a general-purpose
programming language whose principal data structure is feature struc-
tures. The constraint-satisfaction algorithms employed in JAUNT,
namely generalized constraint propagation and forward checking, are
also described.

1 Introduction

One of the goals of the grammatical theories for natural language processing
is a high descriptive power for describing various language phenomena nat-
urally. Generally speaking, however, a high descriptive power spoils the
computational efficiency of sentence analysis. For example, it is known
that parsing LFG[7], parsing disjunctive unification grammar (e.g. [8]),

33

and parsing Constraint Dependency Grammar[12] are all NP-complete prob-
lems, for which there are no known polynomial algorithms(1, 5, 11]. These
NP-complete problems can be formalized as a constraint-satisfaction prob-
lem over a finite domain, and therefore, efficient algorithms for solving such
problems should be employed for natural language systems based on these
grammatical theories.

On the other hand, constraint-satisfaction problems over a finite domain,
sometimes called consistent-labeling problem, have been well studied in the
areas of image understanding and graph theory. Constraint propagation[18,
10] and forward checking are the examples of efficient algorithms which have
been developed in these research areas.

We have developed a constraint solver named JAUNT for solving the com-
binatorial tasks in natural:language processing, using the latest techniques
of constraint satisfaction problems. JAUNT is also a general-purpose pro-
gramming language for manipulating feature structures, the most commonly
used data structure for natural language processing. This paper describes
the design and the implementation of JAUNT. We discuss the relationships
between various natural language processing tasks and constraint satisfaction
problems in the next section. The design of JAUNT is given in section 3, and
the constraint satisfaction algorithms adapted in JAUNT is explained in sec-
tion 4. Section 5 describes the implementation details. JAUNT is currently
used in two machine translation systems. Their usage are given in section 6.
Section 7 concludes this paper.

2 Natural language processing and constraint
satisfaction

Let X1, Xs, ..., X, be variables whose value should be selected from a finite
domain A;(1 < i < n). Constraint R is a predicate which determines the legal
combinations of the values of the variables. Constraint satisfaction problem
on a finite domain (hereafter called consistent-labeling problem) is a task to
find the existence of a value assignment to the variables X, X2, ..., X,,[14].
For example, giving different colors to adjacent vertices of a graph is a
consistent-labeling problem. It is known that solving a consistent-labeling
problem is NP-complete, for which there are no known efficient (i.e. poly-

34

nomial) algorithms. Let us look at some of the NP-complete problems in
natural language processing in the rest of this section.

In Lexical Function Grammar(7], applications of grammar rules are con-
trolled by the unification between F-structures. Assume that every word in
an input sentence has multiple meanings. You can impose agreement con-
straints between the syntactic features of different words by means of unifica-
tion. If you consider a word as a variable and its lexical meaning as its value,
parsing LFG can be formalized as a consistent-labeling problem. Following
this formalization, Berwick[1l] proved that parsing LFG is an NP-complete
problem.

Feature structure is one of the most popular data structure used in
unification-based grammars. There are attempts to increase the descrip-
tive power by incorporating disjunctions to feature structures (e.g. [6, 8]).
Whether unification of two disjunctive feature structures succeeds or not de-
pends on the existence of the value combinations of the disjunctions. There-
fore, if we consider the disjunctions as variables, unification of disjunctive
feature structure can be regarded as a consistent-labeling problem. In fact,
Johnson[5] showed that unifying two disjunctive feature structures can be for-
malized as a satisfaction problem of the quantification-free first order logic
with equality, and as a result, that it is an NP-complete problem.

Constraint Dependency Grammar[ll, 12] is a grammatical formalism
based on constraints between modifier-modifiee relationships. The variables
are, in this case, the modifiee slots of each word whose value is one of the
other word in the input sentence. The grammatical rules in Constraint De-
pendency Grammar are given as constraints between their values. Because
cross-serial dependency sentences such as respectively sentences in English
can be generated, the weak generative capacity of Constraint Dependency
Grammar is strictly greater than Context Free Grammar[12], but the com-
putational complexity of its analysis is NP-complete.

We have seen that various tasks in natural language analysis can be for-
malized as a consistent-labeling problem. The rest of the paper describes the
design and implementation of a constraint solver that we have developed for
solving such problems efficiently.

35

$board:= {

[c={%1,2,3,4,5,6,7,8/},r=1],
[c={%1,2,3,4,5,6,7,8%},r=2],
[c={%1,2,3,4,5,6,7,84},r=3],
[c={%1,2,3,4,5,6,7,8%},r=4],
[c={%1,2,3,4,5,6,7,8%4},r=5],
[c={%41,2,3,4,5,6,7,84},r=6],
[c={%1,2,3,4,5,6,7,84},r=71],
[c={%1,2,3,4,5,6,7,84},r=8]
};
for X,Y in $board begin
addc
X?r = Y?r
=>
X?c '= X?¢ & abs(X?r-Y?r) != abs(X?7¢c-Y?¢c);
end;

find $board begin
call print $result;
end;

Figure 1: 8-queen program

3 Design of JAUNT

3.1 Program example

First we give a small example of a JAUNT program. Figure 1 is an 8-queen
program written in JAUNT. In the figure, [...] isa feature structure, {...}
is a list, and {%...%} is a disjunction.

The first statement of the program is an assignment statement: a list of
length eight is assigned to the global variable $board. Each element of the
list is a feature structure having two attributes ¢ (column) and r (row). The

value of the attribute ¢ is a disjunction whose value should be selected from
the set of elements 1,2,..,3.

The second statement is an iteration. For every combination of elements
X, Y of the list $board, the body from begin to end is executed.

There is only one statement, the addc statement, in the body of the
loop. addc (add constraint) applies a new constraint to the disjunctions. In
this case, since x and y are bound to a feature structure representing the
position of a queen, the constraint can be read as: If the rows of the queens
are different (X?r = Y?r), their columns are different (X7c '= Y?c) and
the differences of their columns and their rows are different (abs(X?r-Y?r)
1= abs(X7c-Y?c)). The question mark (?) is an operator for accessing a
component of a feature structure.

The last statement (find ...) actually initiates a search to obtain the
solutions. find searches every value combination of the disjunctions in the
given argument that satisfies all the constraints simultaneously, binds it to
the global variables $result, and executes the body.

3.2 Design principle

The design principles of JAUNT as a programming language are as follows:
1. Disjunctive feature structure as a basic data type
2. Full power of conventional procedural language
3. Meta-inference capability

We discuss these points in the rest of this subsection.

Disjunctive feature structure as a basic data type

As a general-purpose programming language, a constraint solver is desir-
able to be combined with an existing programming paradigm. For this, it
is important that variables and constraints among them should be naturally
represented in the programming paradigm. Notice that wvariables here are
the variables in the sense of constraint satisfaction problems, and should
be clearly distinguished from the variables in the conventional programming
language such as Pascal whose variables allow destructive assignments. To

37

avoid confusion, we call a variable in the sense of constraint satisfaction a
choice point in the rest of the paper. A choice point represents exactly one
value to be selected, although it may be not explicitly specified during the
program execution. Therefore, in contrast to variables of conventional lan-
guages, the value of a choice point is never changed although its domain
may be narrowed down as the execution proceeds. In this respect, logical
variables in logic programming is similar to choice points in constraint sat-
isfaction problems, and hence, the Constraint Logic Programming languages
such as [2] are natural integration between constraint satisfaction and an
existing programming paradigm.

A logical variable may or may not represent a choice point, but a disjunc-
tion in a feature structure represents a choice point more explicitly. There-
fore, it is quite natural to build a constraint solver by regarding disjunc-
tions as choice points. Unlike constraint logic programming, choice points in
JAUNT may appear in an input data. Besides, JAUNT programmers do not
need to know where and how many choice points are there in the given task.
For example, when X is bound to

[head="word1l",
agreement={%p1,p24},
subject=[head="word2",

- agreement={%p2,p3%4}

11,

the statement
addc X7agreement == X7subject?agreement;

imposes a constraint between the agreement features of “word1” and “word2”
where when X is bound to

[head="word1l",
agreement={%p1,p2%4},
subject={} [head="word2", agreement=p2],
[head="word3", agreement=p3]
13
11, :

38

it is a constraint between the ambiguity of the subject slot and the choice of
the agreement feature of “wordl”. In this regard, JAUNT is contrasted to
constraint solvers such as CHIP[2] and ALICE[9] in which choice points and
their domains are explicitly defined in a program text.

Unification is a common method for expressing constraints on disjunctive
feature structures in terms of equality relationships (e.g. [8]). In JAUNT,
constraifits are expressed in a form of logical formula which allows more
powerfu%pnditions. As Johnson[5] pointed out, any constraint expressed by
unification® can be restated by a first-order logic formula with equality. In
addition, JAUNT allows inequality predicates (i.e. <, <, etc.) for integers
and user-defined predicates. Using the inequality predicates, constraints on
word positions can be expressed easily. For example, let X?pos be the position
of the word X in a sentence and X7mod be the position of the modifiee of the
word X. Then, a constraint stating projectivity, that is, no modification links
do not cross over each other, is written as follows.

addc X?7pos < Y?pos & Y7pos < X7mod =>
X?pos <= Y?mod & Y7mod <= X7mod;

addc X7mod < Y?pos & Y7?pos < X7pos =>
X?mod <= Y?mod & Y?mod <= X7pos;

This kind of constraints is very difficult to represent by unification.

Flexibility of conventional procedural language

If you want to apply the no-cross-over constraint described above to every
combination of the words in the input sentence, there must be a means to
iterate the execution of the addc statements. In general, the applicabil-
ity of constraints depends on the situation, so mechanisms to control the
application are necessary. In addition, user-defined predicates may require
extra-logical programming features such as destructive assignments. More-
over, it is convenient if constructing and modifying feature structures can be
done within a JAUNT program.

To fulfill these requirements, we have designed JAUNT as a general
purpose procedural language as well, incorporating such constructs as de-
structive assignment, iteration, conditional execution, and function definition
and invocation. To improve the productivity of the program development,
JAUNT also provides separate-compilation and macro definition/expansion.

39

define existP(X,F)

local Dau;
begin v
if F in X7synflag then return 1;

else ‘

for Dau in X7daus
if existP(Dau,F)==1 then return 1;

return 0;

end;

Figure 2: User-defined function

Since input/output of structural data (i.e. feature structure) and storage
management are integrated parts of JAUNT, programmers do not have to
worry about those low-level programming elements.

As an example of user-defined function, we show function existP(X,F)
which returns 1 when these exists feature F in the tree rooted X in figure 2.

Mechanism for meta-inference

A consistent-labeling problem may or may not have a solution. If it has one,
it is most probable that there are multiple solutions. In fact, if given con-
straints are not ‘tight’ enough to narrow down a few, if not one, solutions,
the problem may have exponentially many solutions. The same situation
is common in natural language processing. Strict grammars cause analysis
failures for grammatical sentences, on the other hand, loose grammars pro-
duces combinatorial number of parse trees for certain type of sentences. To
avoid such situation, grammatical constraints should be dynamically added
and removed depending on the size of the solution space. In other words,
a constraint solver should be provided with means to watch the inference
process of its own and change the strategy depending on the observation .
To support the meta-inference capability, JAUNT provides

1. a mechanism to detect inconsistencies between constraints, and

!These features of programming language are called reflection.

40

2. functions to save and restore the state of constraint-satisfaction process.

In JAUNT, the state of constraint-satisfaction process is defined as the
set of all choice points and the constraint matrices (described later) between
them. Other status such as global and local variables, the program counter,
and the control stack are not saved, so applications of constraints can be
undone without disturbing the control flow.

Meta-inference is sometimes performed in an external module. JAUNT
has inter-process communication primitives based on UNIX sockets. Using
these meta-inference capabilities, an independent inference process using ex-
ternal knowledge can monitor and intervene a JAUNT program. If it detects
an inconsistency, it instructs the JAUNT program to go back to the previous
inference state and try another set of constraints; if it finds that the solution
space is not small enough, it may give new constraints from its own knowl-
edge source. By separating the meta-inference module from the object-level
JAUNT program, modularity of knowledge can be achieved.

Examples of practical usage of the meta-inference capability of JAUNT
are described in section 5.

4 Constraint-satisfaction algorithm

Two algorithms are used in JAUNT for constraint satisfaction. One is the
constraint propagation algorithm[18, 14] which is activated at the time when a
new constraint is added by the addc statements. The constraint propagation
algorithm runs in a polynomial time, and it eliminates locally inconsistent
values from the choice points and propagates the result to the neighboring
constraints. The constraint propagation algorithm usually reduces the size
of the search space significantly, but in general, it does not solve the entire
problem by itself.

The other algorithm used in JAUNT is the forward checking algorithm
which is triggered by the execution of the find statement. It is essentially a
back-track algorithm, but it prunes unpromising branches whenever temporal
choices are made, which significantly reduces the size of the remaining search
space.

This section describes the constraint propagation algorithm used in JAUNT
in detail. The readers are referred to [4] for the forward checking algorithm.

41

X?foo X?bar
{%2,4%)} {%3,5%}

Figure 3: Constraint matrix

4.1 Internal representation of constraints

Before describing the algorithm in detail, let us explain the internal repre-
sentation of the constrains. In a compiled module of a JAUNT program, a
choice point is represented by a data structure called CP. A CP maintains
a list of possible values (i.e. domain) at the time of the program' execution.
When a new constraint is added by an addc statement, the constraint is
represented internally as a constraint matric. For example, assume that

X := [foo={%2,4%}, bar={%3,54}];

is executed. X7foo and X7bar are represented internally as CPs whose do-
main size is two. Then, when

addc X?foo < X?bar;

is executed, a new two-dimensional constraint matrix is created between the
two CPs, as shown in figure 3.

Each dimension of the constraint matrix corresponds to a CP. The ele-
ments indicate whether the particular combination of the CP values is legal
(1) or illegal (0). For example, X?foo = 2 and X?bar = 3 satisfies the con-
straint and hence, the corresponding element in the matrix is 1.

If another addc statement

addc X?foo * X?bar < 20;

42

X?oo X?bar
{%2,4%} {%3,5%)}

Figure 4: After X?foo * X?bar < 20 added

is executed after that, the value combination of X7foo = 4 and X7bar = 5
does not satisfy the constraint, and the corresponding element in the matrix
is changed to 0, yielding the matrix shown in figure 4.

Suppose that the execution of an addc statement referring to n different
CPs X,,Xs,..., X, reveals that the value combination < z,zs,...,2, > is
illegal. JAUNT first locates an n-dimensional constraint matrix connected
to X1, Xa,..., Xp, and set its element corresponding to the value combination
< 2y,Z3,...,L, > t0 0. If there is no such constraint matrix, JAUNT creates
a new one whose elements are all 1, and sets the element of < z;, 25, ..., 2, >
to 0.

The size of a constraint matrix is the product the domain size of each
connecting CP. Therefore, programmers should be careful not to execute an
addc statement referring to many CPs when the domains of the CPs are
not small enough. Such constraints should be applied as late as possible to
improve the efficiency of a JAUNT program.

4.2 Constraint propagation

The basic idea of constraint propagation is to remove locally inconsistent
values from the choice points and to reduce their domain size before back-
tracing search is performed.

In the example above, let us consider the row of X7foo = 4 in the con-
straint matrix. When X7foo = 4, the elements of the matrix is zero whatever

43

X\Y

Figure 5: Removing z;

value X?bar takes. This means that there are no solutions with X?foo = 4
and therefore, this value can be safely removed from the domain of the CP
X7foo.

In general, when a particular row or column (or plane or hyper plane, if
the dimension is greater than two) contains all zero elements, corresponding
value z; of CP X can never participate in a solution (see figure 5). Therefore,
z; can be thrown away from the domain of X. Whenever a constraint matrix
is updated, JAUNT searches for a hyper plane with all zero elements and
removes the corresponding value from its domain. This may update other
constraint matrices connected to the CP, and it may cause values in other
CPs to be eliminated. Thus, updates are propagated over the network of
constraints until the entire network reaches a stable state. '

For every hyper plane in a constraint matrix, JAUNT keeps the current
number of ones on that plane, called support (see figure 6). When a cer-
tain element of a constraint matrix appears to be inconsistent as a result of
evaluating an addc statement, the corresponding support in each dimension
is decremented. When a value in a CP is removed by constraint propaga-
tion, the corresponding hyper plane of every constraint matrix connected to
the CP is removed, and the result is reflected to all the support values in
the matrix. This algorithm is a natural extension of Mohr and Henderson’s
arc-consistency algorithm[15] to allow n-ary constraints.

44

support[Z][]

Number of ones
in the plane

O
. o@\

K
S

support[X][]

Figure 6: Support

5 Implementation

JAUNT is realized as a preprocessor to an object-oriented language called
COBI17] running on UNIX. A JAUNT program is first translated into a COB
program by the translator, then compiled into an object machine code by
the COB compiler. The compiled object modules are linked with other COB
and C libraries when necessary to form an executable code. The JAUNT
preprocessor is also written in COB, and its code size is about 8,000 lines.
The compiled 8-queen program shown in figure 1 generates all the solutions
in 2.4 seconds on an i80386-based personal computer. In this section, we
discuss the details of the compilation rules for constraints. Other program
constructs such as assignment and iteration are translated into COB virtually
one-to-one.
Let us consider the following statement.

addc X?foo < X7?bar;
This fragment of code is translated into the following COB program.
{

45

class Generator g = new@Generator();
GSTART(fun_builtin_dot(lvar_X,const_28),v000) {
GSTART(fun_builtin_dot(lvar_X,const_32),v001) {
if (1(jec_1t(v000,v001))) g->noGood();
} GEND;
} GEND;
}

GSTART(X,Y) is a macro and is expanded to a loop, which first evaluates X
and if it is a CP, binds each value of its domain to the temporary variable Y
and executes the body (if the value of X is not a CP, the body is executed only
once with X = Y). The above example is, therefore, expanded to a nested loop
for the values of X?foo and X?bar. The variable g is an object of the class -
Generator which keeps track of the temporal bindings of the referred CPs.
When g receives a message nogood(), g locates the appropriate constraint
matrix (or creates one if there is none), sets the element corresponding to the
temporal value combination to 0, and activates the constraint propagation.
fun_builin_dot() and jc_1t() are functions for the operations ? and <,
respectively. const_28 and const_32 are initialized to foo and var at the
beginning of the program. '

Notice that one execution of an addc statement may affect several differ-
ent constraint matrices. For example, if

X := [agreement={p1,p2%},
modifiee={) [agreement={%p2,p3%}],
lagreement={/p1,p34}]
h}
1,

evaluation the statement
addc X7agreement==X7modifiee?agfreement;

affects two different three-dimensional constraint matrices. This is the reason
why g locates the constraint matrix after it receives the nogood() message.

Since the number of CPs in a constraint has a large impact both on the
size of the constraint matrices and the evaluation time of the constraint,
a complex constraint is first transformed into a conjunctive normal form
and each subformula is treated as a separate constraint. For example, the
constraint

46

addc o => (B & v);
is decomposed into the following two statements:

addc not(a) | fF;
addc not(a) | 7;

Although duplicate evaluation of alpha may be done, each subformula con-
tains less CPs and is executed more efficiently in general.

6 Application

JAUNT is currently used in the Japanese-to-English machine translation
system JETS[13] and the English-to-Japanese machine translation system
Shalt2.

The system structure of the source language analysis parts of JETS is
shown in figure 7. The morphological analyzer analyzes an input sentence
based on a type-3 grammar and creates a feature structure representing a
sequence of phrases, which contains disjunctions (choice points) for lexical
ambiguities and attachment ambiguities (figure 8). The syntactic analysis
program written in JAUNT applies grammatical constraints based on Con-
straint Dependency Grammar to these choice points and sends the result to a
user-interface running on a separate machine. The ambiguous choice points
(i.e. those with domain size> 1) are highlighted on the screen, and the end
user can select an appropriate value for each of them. This information is
sent back to the JAUNT program through the inter-process communication
channel and applied as new constraints. Thus, in JETS, the end user acts as
an external knowledge source to guide the inference process of the program.

Figure 9 shows the structure of the source language analysis part of
Shalt2. In Shalt2, most of the syntactic analysis task is done by an augmented-
context-free grammar called PEG. In general, however, since PEG does not
determine the attachment of prepositional phrases, the output of PEG in-
volves disjunctions. The constraint program applies grammatical and se-
mantic constraints to it, and if there remains ambiguities, the external case-
based inference generates appropriate constraint for resolving the remain-
ing ambiguity[16]. Thus, clear separation of the grammatical and semantic
knowledge from the case-based knowledge is achieved.

47

Input sentence

Morphological
Analyzer

Disjunctive
Feature
Structure

Syntactic User
Analyzer Interface

Parsing
Result

Figure 7: Analysis part of JETS

{ [word_id=0,
string="ANATA",
modifiee={%1,2,3,4%},
lex={) [part_of_speech=pronoun, sf={hum}],
[part_of_speech=noun, sf={loc}]

h},

Figure 8: Input feature structure

48

Input sentence
)

PEG English
Parser

Disjunctive
Feature
Structure

Disambiguation

Module

Parsing
Result

Case-based
Inference

Figure 9: Analysis part of Shalt2

49

7 Conclusion

We have described the design and the implementation of a constraint solver
whose principal data structure is disjunctive feature structures. It solves
constraint-satisfaction problems on a finite domain efficiently by using the
generalized constraint-propagation algorithm and the forward checking algo-
rithm. Mechanisms for meta-inference are also provided so that different type
of knowledge can be effectively combined to solve a given problem. We are
planning to incorporate preferences between multiple solutions and to allow
not only choice points but also certain types of constraints to be specified in
the input data as well.

References

[1] Berwick, R. C., 1982, “Computational Complexity and Lexical-

Functional Grammar,” American J. of Computational Linguistics, Vol.
8, No. 3-4.

[2] Dincbus, et. al., 1988, “The Constraint Logic Programming Language
CHIP,” Proc. of the International Conference on 5th Generation Com-
puter Systems.

[3] Haralick, M. and Gordon, L. E.,; 1980, “Increasing Tree Search Efficiency
for Constraint Satisfaction Problems,” Artificial Intelligence, Vol. 14.

[4] Hentenryck, P. V., 1989, Constraint Satisfaction in Logic Programming,
MIT Press.

[5] Johnson, M., 1990, “Expressing Disjunctive and Negative Features with
First-Order Logic,” Proc. of ACL Annual Meeting ’90.

[6] Karttunen, L., 1984, “Features and Values,” Proc. of COLING 84, Stan-
ford, CA.

[7] Kasper, R. T. and Bresnan, J., 1981, “Lexical-Functional Grammar: A
Formal System for Grammatical Representation,” in: J. Bresnan, ed. The
Mental Representation of Grammatical Relations, MIT Press.

50

[8] Kaplan, R. T., 1987, “A Unification Method for Disjunctive Feature De-
scriptions,” Proc. of ACL Annual Meeting ’87.

[9] Lauriere, J. L., 1978, “A Language and a Program for Stating and Solving
Combinatorial Problems,” Artificial Intelligence, Vol. 10.

[10] Mackworth, A. K., 1977, “Consistency in Networks of Relation,” Arti-
ficial Intelligence, Vol. 8.

[11] Maruyama, H., 1990, “Structural Disambiguation with Constraint Prop-
agation,” Proc. of ACL Annual Meeting ’90.

[12] Maruyama, H., 1991, “Constraint Dependency Grammar and its Weak
Generative Capacity,” Advances in Software Science and Technology, to
appear.

[13] Maruyama, H., Watanabe, H., and Ogino, S., 1990, “An Interac-
tive Japanese Parser for Machine Translation,” Proc. of COLING ’90,
Helsinki.

' [14] Montanari, U., 1974, “Networks of Constraints: Fundamental Properties
and Applications to Picture Processing,” Information Science, Vol. 7.

[15] Mohr, R. and Henderson, T., 1986, “Arc and Path Consistency Revis-
ited,” Artificial Intelligence, Vol. 28.

[16] Nagao, K., 1990, “Constraints and Preferences: Integrating Grammat—
ical and Semantic Knowledge for Structural Disambiguation,” Proc. of
Pacific Rim International Conference on Artificial Intelligence, Nagoya.

[17] Onodera, T., Kuse, K., and Kamimura, T., 1990, “Increasing Safety and
Modularity of C-Based Objects,” Proc. of 3rd International conference
TOOLS 3, Sydney.

[18] Waltz, D. L., 1975, “Understanding Line Drawings of Scenes with
. Shadows,” in: Winston, P. H. ed.: The Psychology of computer vision,
McGraw-Hill.

51

