SGML Architectures:

A More Abstract Formalism for
Interchanging Structured Information

Steven R. Newcomb

Abstract

By itself, SGML offers a means whereby the syntax and semantic associated with a given
information construct (an element) can be expressed: an element definition in a DTD. Whenever
such an information construct must be used in a document, the corresponding DTD must allow
this construct to appear there. Problems can arise, however, when it becomes necessary for
whole sections of various DTDs to resemble each other. While the method of using master
DTD fragments that are inserted into actual DTDs is usually workable, this method is often
needlessly and cripplingly rigid.

The use of architectures, rather than sets of DTD fragments, for formalizing the structures
needed to permit interchange of information common to several document types, permits the
architects of DTDs to retain full and optimum control of SGML’s validation apparatus, while still
guaranteeing information interchangeability. DTDs can be permitted to change in auy way that
does not violate the constraints imposed by the architecture. Each architecture can be developed
_in such a way that it imposes no constraints on document structure that are not actually
necessary for interchange of the information with which the architecture is concerned. The DTDs
themselves can then be used to impose as much further constraint on actual document instances
as desired, so none of the constraining power of SGML is lost to any particular document type
simply because of a need to allow the interchange of information elements whose general outline
must appear in more than one type of document.






Page 1

About the author:

Steven R. Newcomb, Ph.D. has been the Vice Chairman of the American National Standards Insti-
tute’s X3V1.8M committee since its inception in 1986, and the co-editor (with Charles F. Goldfarb)
of the HyTime Hypermedia/Time-based Structuring Language (now known as ISO/IEC Interna-
tional Standard 10744:1992). Dr. Newcomb was the founding Chairman of the SGML Users’
Group’s Special Interest Group on Hypertext and Multimedia (“SGML SIGhyper”). He founded
and chairs the Conventions for the Application of HyTime (CApH) activity of the Graphic Commu-
nications Association (GCA). He serves as founding Chairman of the GCA’s annual International
HyTime Conference.

Dr. Newcomb is President TechnoTeacher, Inc., a software development and consulting firm
emphasizing SGML/HyTime tools and application development environments. TechnoTeacher’s
“HyMinder” object-oriented C++ class is used in hypermedia research projects and for software
product development worldwide. TechnoTeacher has been honored with the Graphic Communica-
tions Association’s “Tekkie” award “for meritorious contributions to the technical documentation
industry.” ' '

A music theorist by training, Dr. Newcomb was the founding Associate Director of the Florida
State University Center for Music Research in Tallahassee, Florida. He continues to play an editorial
role in the development of the ISO Standard Music Description Language (ISO/IEC DIS 10743,
“SMDL”). :

Dr. Newcomb has spoken on HyTime at many SGML-oriented and other conferences, including
CD-ROM, Hypertext, ACM SIGGRAPH, and ACM SIGDOC, as well as several of the Graphic
Communications Association’s TechDoc, SGML, International Markup, and Information T(?,chnoly-
ogy Week conferences. He has given many HyTime tutorials in North America, Europe, Japan.
Singapore, and Australia. For the last several years, HyTime Workshops are being team-taught by
both Dr. Newcomb and Dr. Michel Biezunski, Director of High Text S.A.R.L. (Paris, France).

Steven R. Newcomb, President
TechnoTeacher, Inc.
(courier: 3800 Monroe Avenue, Pittsford, NY 14534-1330 USA)
: P.0O. Box 23795
Rochester, New York 14692-3795 USA
direct +1 716 389 0964
main +1 716 389 0961
fax +1 716 389 0960
Internet: srn@techno.com
FTP: ftp.techno.com
WWW: http://www.techno.com

Copyright (©1995 TechnoTeacher, Inc., Rochester, New York USA HyMinder@Techno.com



Page 2

Introduction

SGML has always offered the means whereby the syntax and semantics associated with a given
information construct (an element type) can be expressed; these are expressed in element definitions
in document type definitions (DTD). Differing document types may contain some similar or identical
element definitions, and sets of software applications can be made to contain or use similar or
identical software modules for processing such similar or identical element types. In this way,
anyone who controls some set of DTDs can hLeighten the application-neutrality of the information
contained in documents conforming to those DTDs, save money on software development, and
reduce expensive confusion in general, by maximizing the generality of each information construct
(element type), and by avoiding, insofar as possible, any duplication of semantics which do not
also duplicate syntax. However, until quite recently, with the advent of the HyTime (ISO/IEC
10744) international standard, there was no agreed-upon formalism for the expression of siiilarity
in structure and semantics. Now these things can be expressed formally, and enforced, at least
to some extent., automatically, in a new, more abstract kind of document type definition called a
“meta-DTD.” A meta-DTD describes the structure and semantics of a class of documents which
therefore conforms to an “SGML architecture.”

The need for modularity, consistency, and reusability is addressed in similar ways in the context
of good object-oriented system design, and the similarity between SGML element types, on the
one hand, and object classes, on the other, is not coincidental. The notion of “inheritance” of
the structure and functionality of one class by another is at the heart of the innovation of SGML
architectures; SGML architectures make it possible for element types to “inherit” the characteristics
of the meta element types defined in SGML architectures.

SGML Architectures vs. Current Practices

In the absence of SGML architectures, syntactical similarities between constructs used in some
set of DTDs could be represented and enforced by SGML’s parameter entity definition/reference
feature. This permits any arbitrary portion of a DTD, such as an attribute definition list, to
appear in multiple places by a text substitution mechanism. Another tool for enforcing similarity
in some set of DTDs is simply to create a single DTD entity which contains all of the elements
used in all of the DTDs in the set. This single entity can define all of tlic eclement types common
to all of the DTDs, and all of the other element types as well, so long as each document type is
uniquely associated with a single element type as its document element. All documents conforming
to all of the DTDs in the set refer to the same DTD entity, but each document’s <!DOCTYPE. ..
declaration, by specifying the root element type, specifies the particular DTD that the parser will
automatically derive from the DTD entity. If both mechanisms are used (i.e., the parameter entity
definition/reference feature and the <!DOCTYPE. .. declaration to specify the root element type),
certain DTD maintenance advantages can be gained.

While the method of using common DTD fragments that are inserted into actual DTDs is
usually workable, this method can bring with il some undesirable rigidity. Wherever a DTD
fragment is inserted into a DTD, it is inserted verbatiin. Even if parameter entities are not used,
or if they are used in complex ways (such as having the inserted text of a parameter entity coutain
a reference to a previously-defined parameter entity), the insertion of DTD fragments can result
in the propagation of unnecessary and unnatural constraints on the structure of documents, or,
alternatively, less structural constraint than is desired by the architect. and than can be usefully
validated by an SGML parser or SGML database engine. Moreover, tlie impact of a change in a

Copyright ©1995 TechnoTeacher, Inc., Rocheaster. New York USA HyMinder@Techno.com



Page 8

parameter entity on any given DTD can be surprising and confusing to everyone but a computer.

The use of SGML architectures, rather than sets of DTD fragments, for formalizing the struc-
tures needed to permit interchange of information common to several document types, permits
the architects of DTDs to retain full and optimal control of SGML’s validation apparatus. while
still guaranteeing information interchangeability. DTDs can be permitted to change in any way
that does not violate the constraints imposed by the SGML architecture. Each SGML architecture
can be developed in such a way that it imposes no constraints on document structure that are
not actually necessary for interchange of the information with which the SGML architecture is
concerned. The DTDs themselves can then be used to impose as much further constraint on actual
document instances as desired, so none of the constraining power of SGML is lost to any particular
document type simply because of a need to allow the interchange of information elements whose
general outline must appear in more than one type of document.

HyTime is the Pioneer SGML Architecture

Like all SGML architectures, HyTime is formally described by a meta-DTD consisting of a set of
meta element types, called architectural forms. In a document instance conforming to HyTime,
any element that inherits the characteristics of a HyTime architectural form is recognized by a
HyTime application by means of the value of that element’s HyTime attribute. which is always the
name of the architectural form. The name of the attribute, HyTime. corresponds to the HyTime
architecture, and its value (e.g., i1ink) corresponds to the ilink architectural form (the independent
link meta element type) in the HyTime meta-DTD. (It has been aptly said that the value of an
architecture attribute, such as ilink used as the value of a HyTime attribute, can be considered
a “meta generic identifier” or “meta-GL.”) Any element whose HyTime attribute’s value is ilink
is universally known to HyTime applications as an element that expresses a relationship of some
kind, and that has certain HyTime-defined syntactic characteristics.

HyTime is a very important architecture for several reasons:

¢ It is an international standard: ISO 10744:1992. It is the only SGML architecture that has
(so far) become an international standard.

¢ HyTime pioneers the whole idea of SGML architectures; it is the first such architecture,
and the concept of SGML architecture was devised in order to allow HyTime itself, and the
applications that HyTime informs, to be expressed in a formal manner. In its Annex C, the
HyTime standard explicitly standardizes the meta-DTD formalism used to express not only
HyTime itself, but also all other SGML architectures, regardless of whether they are derived
from the HyTime architecture.

o HyTime establishes the syntax and semantics of several kinds of information that arc cssential
for expressing information in general. It is far more general in scope than any particular
application of it. (Other SGML architectures can be as application-specific or application-
neutral as their creators desire.)

SGML Architectures Other Than HyTime
A limitless number of SGML architectures can be usefully developed. It now appcars that business-

context-specific SGML architectures, rather than D'TDs, will be the most effective and, at the same
time, the least costly method of allowing information initerchange within any specific context, such

Copyright ©1995 TechnoTeacher, Inc., Rochester, New York USA HyMinder@Techno.com



Page 4

as an entire enterprise, in which there are multiple types of documents. For the context of the
Gourd Motor Company (no relation to any existing corporate entity), for example, a company-wide
SGML architecture can be developed in which the value of a so-called Gourd attribute identifies
the Gourd architectural form to which any given element is intended to conform. For example, if
Gourd=requisition, then the element conforms to the constraints universally specified, throughout
the Gourd organization, for requisition documents. This allows each division, department, or other
subunit to define its own subclass(es) of Gourd-standard requisitions, each kind meeting all the
syntactic and semantic requirements of all who need to use the information contained in it. In the
case of a Gourd unit that, unlike any other Gourd unit, purchases radioactive materials, this kind
of flexibility can be extremely desirable. In such a case, all the government and environmental
paperwork can become part of the requisition document, organized in a fashion determined locally
by that unit, but still processable by the purchasing department and all other concerned units at
Gourd.

The notion that SGML architectures can and should be used to achieve enterprise integration
has a number of interesting and profound implications for the information processing industry.
Among these implications are:

e Many business-context-oriented meta applications, supported by reusable software modules,

called engines, will appear. For example, a company-wide “Gourd engine” would be capable of
handling all the ordinary tasks associated with elements conforming to all Gourd architectural
forms, and would be used in all applications throughout the Gourd organization. Taken as a
whole, such an engine could be described as an implementation of the Gourd meta application.
HyTime engines, which may be thought of as implementing a “human civilization oriented”
(rather than just “Gourd oriented”) meta application, are early examples of such engines.
Meta applications may be associated with any level of organizational hierarchy, and, in specific
contexts, multiple engines may be used in the same application simultaneously. For example.
a given element might have both a HyTime attribute and a Gourd attribute, each declaring
what the element is in terms of the HyTime and Gourd architectures, respectively. The design
of new SGML applications will no longer be a single layer of application specific software built
upon supporting general purpose SGML software; instead, new applications will consist of
aggregations of engines, of which SGML supporting software and HyTime engines are only
two. Of course, there will also be some software in each application which is completely specific
to an application, but the amount of such special software will be minimized by the use of
engines. _
The mapping of an SGML architecture to an object oriented implementation is completely
smooth and natural. A given element type becomes an object class that inherits all of the
semantics (and associated processing characteristics) of all of the architectural forms it in-
herits from all desired SGML architectures. The existence of SGML architectures (sets of
architectural forms) and their engine implementations (sets of object classes corresponding to
the architectural forms) reinforce each other: software developers enjoy enhanced productivity
by re-use of engine software wherever it is appropriate, and the use of SGML architectures
in documents explicitly reminds them to do so. Information architects employ pre-existing
SGML architectures because they enhance their own productivity, and because of the savings
that will be realized when their architectures are implemented.

e Many new kinds of document validation will appear, all in the realms of all the applications
and SGML architectures in which documents participate. SGML tools will be regarded as only
the basic tools for information interchange, like other communications gear. Validation of a

Copyright ©1985 TechnoTeacher, Inc., Rochester, New York USA HyMinder@Techno.com



Page 5

document instance for conformance with its DTD will be seen as a trivial, automatic process
in the same league with (and as taken for granted as) the communications protocols that are
used to transmit and receive data. Much greater emphasis will be placed on the document
instance’s conformance to its corresponding SGML architecture(s).

The primary focus of information architects will shift away from DTD design and toward meta-
DTD design. One aspect of their work will be the development of DTDs and meta-DTDs that
conform to (are derived from) one or more meta-DTDs. The scope of information architecture
projects will usually encompass all of the document types used in an entire context (such as
all the documents used and/or produced by a large organization), rather than just a small
number of document types associated with some particular subset of organizational functions.

Document authors will gain control over many (but not all) aspects of the DTDs they use.
This will not cause a problem because DTDs will not be used as the primary means of insuring
information interchangeability; the meta~-DTDs to which document instances will conform will
provide that insurance. Document authors will thus overcome the frustration they frequently
feel today when forced to use rigid DTDs that were not designed in light of all the requiremnents
that authors actually face, especially when improving or correcting a DTD may require a level
of political access that is unavailable to a lowly author. By watching the evolution of the DTDs
that are controlled and actually used by document authors, information architects can evolve
and tune their SGML architectures in response to widespread trends and good ideas, and
thus make more (and more sophisticated) information more widely available throughout an
organization. Document authors will use applications that permit them to tweak their DTDs
interactively, perhaps even while documents are open for writing; this will greatly alleviate
the frustration and distaste many authors now feel about using SGML. However, even though
document authors will have more control over DTDs than they typically do today, SGML
architects will be able to exercise far more control over authors than is possible for today’s
architects with SGML alone, because applications that accept data from authors will be able
to validate open documents not only for conformance with their DTDs, but also with the
SGML architectures (meta applications) to which they must conform. An SGML architecture
is only syntactically (and only partially) described by its corresponding meta-DTD; just as
HyTime does, an SGML architecture may impose many (and complex) semantic and syntactic
constraints which are amenable to validation by architecture-specific engines and applications.

As reliance on SGML architectures and business-context-specific software engines increases,
there will be a concomitant shift of focus away from the comparatively rigid data typing and
content modeling found in today’s SGML DTDs. The beginnings of this trend can be seen
in the HyTime architecture, in which, for example, the declared value of many important
attributes is CDATA. A declared value of CDATA causes SGML parsers not to perform any
validation on the corresponding attribute values; the validation of those attribute values will
be performed by the HyTime engine later, after the attribute value has already been parsed.
As reliance on the validation services offered by pure SGML parsers decreases, emphasis will
shift to engine-based validation, some of which will be done by HyTime engines, and some of
which will be done by engines that support other, additional SGML architectures such as the
hypothetical Gourd enterprise-wide architecture.

In general, SGML architectures impose fewer constraints on DTDs than they impose on in-
stances. DTDs may or may not be used in such a way as to burden the SGML software (i.e.. an
SGML parser, etc.) with the task of verifying that document instances comply with the syn-
tactic constraints imposed by an SGML architecture. The only purpose in validating a DTD
for conformance to an SGML architecture is to determine whether the constraints imposed by

Copyright ©1995 TechnoTeacher, Inc.. Rochester, New York USA HyMinder@Techno.com



Page 6

the DTD would prevent document instances from conforming to that architecture. Of course,
since the DTDs will be increasingly controlled by authors, authors will be free to enhance the
DTDs they use by imposing a variety of validation requirements that can be et by existing
SGML and HyTime tools. For example, if an author decides, for consistency’s sake, that
performing a lexical check on the value of a CDATA attribute would be desirable, that author
can add the necessary HyTime-defined “lextype” attribute to the D'TD. and thereby cause any
HyTime engine to perform that check automatically. (Of course, the SGML architect could
make the same decision and impose this validation requirement upon all instances. Still, the
idea to do so might originate from an author.)

The Loci of Control in Organizations

The distribution of control among the hierarchical levels of human organizations is a tricky balancing
problem. Control which is too centralized reduces the initiative and adaptability of organizational
subunits and individuals. Adaptability is survivability; overly centralized organizations court their
own demise by reducing the value of their most important assets: the accumulated experiences
of their personnel. On the other hand, control which is overly distributed makes organization-
wide cooperation difficult or impossible. Opportunities afforded by combining the experiential
and other assets of several subunits are can be missed, unless by some lucky accident all of the
subunits involved spontaneously cooperate with one another. It is always an open question, in
any given organization, whether the distribution of control occurs in an optimal fashion, and con-
stantly changing conditions demand constant re-evaluation of the imechanisms whereby control is
distributed.

Control, by definition, is the way in which decisions are taken and implemented, and decisions
must always be based on information. The way in which information is structured both reflects and
determines the way in which management (at whatever level) perceives the information on which
‘decisions will be based. Control of information architecture is a fundamental aspect of management.
For example, while it may not be a manager’s job to maintain an organization’s records, it is
definitely the job of some manager to decide exactly how those records will be organized and
maintained. The way in which responsibility for the structure of records is distributed throughout
an organization, therefore, may reveal much about how control in general is distributed throughout
that organization.

Some general observations follow from all this:

e All managers with responsibility for corporate records, or for the use of corporate records for
the support of management decisions, must have some degree of control over the structure
of those records. Without such control, they cannot be held responsible for the usefulness.
accessibility, or current (or future) relevance of the information. All managers who have such
control need at least some of the skills of an information architect.

e Regardless of whether they control the structure of corporate records. all managers need some
awareness of the information architecture(s) used by the organization. Otherwise, they would
be capable of accessing neither existing organizational policy, nor the case history ou wlicl
management decisions must be based.

e Any corporate commitment to information technology, regardless of whether it is to traditional
filing cabinets, to image archiving systems, or to sophisticated high-speed databases. must be
made in such a way as to support the ongoing evolution of the organization’s information

Copyright ©1995 TechnoTeacher, Inc., Rochester, New York USA HyMinderft:Techna.com



Page 7

architecture, regardless of the organizational level at which evolutionary architectural changes
are initiated. The adaptability of the structure of corporate records is a useful indicator of
the adaptability and overall health of the organization.

¢ Responsibility for various aspects of the information architectures used in an organization
must be distributable, and, more importantly, redistributable. Control over the structure
of various corporate records must be permitted to change hands from time to time, and to
undergo overall evolution in response to changing external and internal business conditions.

The ongoing evolutionary development and use of SGML architectures will help all organizations
meet the above challenges more efficiently. Using SGML architectures, control over various aspects
of the organization’s information architectures can be formally distributed, and, when necessary,
redistributed. In general, managers already have most of the information architecture skills they
need. They have lacked only a formal, standard, and sufficiently flexible way to express and propose
evolutionary changes in the way information is structured. The SGML architecture formalism set
forth in Annex C of the HyTime standard will increasingly fill this need.

- Copyright ©1995 TechnoTeacher, Inc., Rochester, Naw York USA HyMinder&Techno.com





