
Abstract 

Sentence alignment is an essential step in 
studying the mapping among different 
language expressions, and the character 
trigram overlapping ratio was reported to 
be the most effective similarity measure in 
aligning sentences in the text simplification 
dataset. However, the appropriateness of 
each similarity measure depends on the 
characteristics of the corpus to be aligned. 
This paper studies if the character trigram 
is still a suitable similarity measure for the 
task of aligning sentences in a paragraph 
paraphrasing corpus. We compare several 
embedding-based and non-embeddings 
model-agnostic similarity measures, 
including those that have not been studied 
previously. The evaluation is conducted on 
parallel paragraphs sampled from the 
Webis-CPC-11 corpus, which is a 
paragraph paraphrasing dataset. Our results 
show that modern BERT-based measures 
such as Sentence-BERT or BERTScore can 
lead to significant improvement in this task. 

Keywords: sentence alignment, sentence similarity, 
sentence embedding   

1 Introduction  

Monolingual text matching is necessary for many 
downstream applications, such as Paraphrase 
Identification and Extraction (Qiu et al., 2006), 
Question Answering (Weiss et al., 2021), Natural 
Language Inference (MacCartney et al., 2008), and 
Text Generation (Barzilay and McKeown, 2005). 

1 The nearest semantic associates of the verb decide based 
on the cosine similarity between the word2vec vectors 
(trained on English Wikipedia) are those verbs such as: 
choose (0.64), opt (0.62), persuade (0.61), want (0.58), 

Take the QA task as an example, identifying the 
text fragments that match the given question within 
the associated passage is often required for locating 
the desired answer. 

However, modern neural-network (NN) 
approaches to text matching often suffer from 
certain limitations when two sequences contain 
considerably different lexicons or diverse 
grammatical structures (McCoy et al., 2019). For 
example, when the verb “decide” in the sentence 
“They decided to go” is nominalized to the noun 
“decision” in its paraphrase “They made a decision 
to go”, the popular word embedding similarity 
approach might fail as the embedding-vectors of 
“decide” and “decision” are quite different 1 . 
Another example is a pair of sentences “A cat is 
chasing a dog.” and “A dog is chasing a cat.”, 
which contain the same set of lexicons and 
syntactic structure but with opposite meanings.  

Furthermore, the NN approaches frequently fail 
while the matching involves multi-word 
expressions, or when expressions require 
compositionality handling (Blevins et al., 2018; 
Hupkes et al., 2020; Zhou et al., 2020). For 
example, it is difficult to match expressions “put 
off” and “procrastinate” using basic word 
embeddings, as the real meaning of the idiom “put 
off” is not the sum of the meanings of its tokens. 

We found that the limitations of NN models in 
text matching could be greatly alleviated by 
utilizing lexico-syntactic paraphrasing patterns 
such as  [VP[VBN[see]NP[X1]]][S[NP[X1]VP[VBD[be] 

refuse (0.57), insist (0.56). However, the noun decision only 
has a similarity score 0.512, which means that its similarity 
to the verb decide is even less than that between decide and 
its quasi-antonymous refuse.  
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VP[observe]]]2, which denotes the conversion from 
active to passive voice for the phrase pair “see the 
lion” and “the lion was observed”. Since some key 
lexicons are involved in the pattern, it would be 
difficult to exhaustively list such patterns by a 
human. It is preferable to automatically extract 
them from a large paraphrase corpus. 

 To collect such lexico-syntactic patterns, a 
high-quality paraphrased sentence-pair dataset is 
essential. Unfortunately, current sentence-aligned 
paraphrase datasets (e.g., MRPC (Dolan and 
Brockett, 2005), PPDB (Ganitkevitch et al., 2013), 
and QQP (Aghaebrahimian, 2017)) are too trivial 
for this task, as they mainly contain lexical 
paraphrases that could be easily handled by a NN. 
On the other hand, some paragraph-aligned 
paraphrase corpora, containing different human 
translations from the same source text, fit our needs 
well. To utilize those paragraph-aligned paraphrase 
corpora, monolingual sentence alignment is the 
first step in retrieving the desired patterns. 

Figure 1 shows how a correct sentence 
alignment could help extract paraphrased sentence 
pairs from longer paraphrased texts. Unless we 
correctly identify which sentences are in 1-to-1 
relationships (green in the figure), we cannot 
correctly identify the desired paraphrased pattern. 

Monolingual sentence alignment approaches 
could be classified into two categories: model-
based approaches (e.g., Jiang et al., 2020), which 
adopt specific models to encode the input 
sentences and perform alignment, and model-
agnostic approaches (Štajner et al., 2018), which 
can be directly applied to the selected dataset, 
without the necessity of training a neural model in 
advance. In our work, we focus on model-agnostic 

2 The structure is annotated in bracketed form analogically 
to phrase-parsing annotation and Xi, i =1,2,… marks 

approaches, as they do not require additional 
labeled data to train the model.  

The downside of previous model-agnostic 
approaches (Štajner et al., 2017; 2018) is that they 
only test the early word2vec word embeddings, 
and do not explore those more advanced NN 
approaches such as Sentence-BERT (Reimers and 
Gurevych, 2019) and BERTScore (Zhang et al., 
2020). Also, they are mainly evaluated on Text 
Simplification (TS) datasets, which are different 
from our paraphrasing datasets.  

In the TS dataset, the original and the simplified 
text often share a considerable number of 
keywords, which remain unchanged and are rarely 
substituted with synonyms. However, this property 
does not hold in our paraphrasing corpus, as its 
paraphrasing expressions usually possess diverse 
syntactic structures with many different lexical 
items. 

Therefore, we suspect that the character trigram 
overlapping ratio, reported as the best for 
monolingual sentence alignment in previous works 
(Štajner et al., 2017; 2018), would not perform best 
on our data. Since our paraphrasing corpus 
contains considerably different lexicons and word 
order, the string-based method such as character 
ngram similarity would lose its edge. Previously 
reported text similarity measures thus should be re-
evaluated for our task, and more advanced NN 
approaches should be explored. 

In this work, we not only compare various 
previously reported text similarity measures on a 
paraphrased paragraph corpus but also additionally 
test some new measures based on the most recent 
NN sentence embedding methods. We utilize those 
above measures with two sentence alignment 
approaches: simple greedy match (e.g., Štajner et 
al. 2018), and sequence match (Gale and Church, 
1993; Barzilay and McKeown, 2001). We conduct 
the evaluation on a manually annotated sentence-
aligned dataset with 400 paraphrased paragraph 
pairs randomly sampled from the multiple 
translation corpus Webis-CPC-11 (Burrows et al., 
2013). 

Our contributions include: 
(1) To the best of our knowledge, we present the 

first study on aligning sentences on a 
paragraph paraphrased corpus;  

(2) We show that character trigram similarity is 
not the best measure for aligning 

matching variables. We use the same tagset as that adopted 
in Penn Treebank (Marcus et al., 1993)  

 

Figure 1:  Sentence alignment for extracting 
paraphrased sentence-pairs. Sentences pairs in 
green are those we want to extract; sentences in red 
are in multi-to-one relation and do not constitute 
sentential paraphrases. 
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paraphrasing corpora. Instead, BERT-based 
embedding methods achieve significantly 
better results even without fine-tuning on 
the target dataset;  

(3) We test several NN-related sentence 
similarity measures (other than 
word2vector) that have not been evaluated 
before for model-agnostic monolingual 
sentence alignment;  

(4) We confirm and expand the observation of 
Choi et al., (2021), showing that [CLS] 
token representation is not necessarily 
superior to averaging individual word 
vectors for sentence representation while 
aligning paraphrased text under BERT. 

2 Sentence Alignment Procedure  

Our sentence alignment procedure is implemented 
with two main elements: (1) selecting an 
appropriate search mechanism (either Bi-
Directional Best Match or Sequence Match); (2) 
adopting a specified sentence similarity measure, 
either string- or embedding-based.  

2.1 Search Mechanisms 

We adopt two approaches to conduct sentence 
alignment: Directional Best Match and Sequence 
Match. 

2.1.1 Bi-directional Best Match 

This is a simple greedy approach that ignores the 
adjacency and dependency information within 
sentences during matching. We adopt an approach 
similar to that reported in Štajner et al. (2018). 
However, in addition to Uni-directional Best 
Match adopted by Štajner et al. (2018), we also test 
Bi-directional Best Match, where we align the 
sentences bi-directionally. We believe that the bi-
directional approach will be more applicable in our 
case since our data is symmetric, while the data 
tested in Štajner et al. (2018) is not.  

In both versions, we take two sets of sentences 
as the input and calculate the similarity of each 
sentence pair that can be formed between these two 
sets. Based on the sentence similarity scores, for 
each sentence in one set, we select the sentence 
from the second set that possesses the highest 
similarity score, forming a set of sentence pairs. In 
the uni-directional version, those pairs are directly 
selected as the final alignments. 

In contrast, for the bi-directional approach, we 
additionally repeat the same selection procedure 
from the opposite direction for each sentence in the 
second set to form another set of sentence pairs. 
Afterward, we take the intersection of these two 
sets to obtain the final aligned sentence pairs.  

2.1.2 Sequence Match 

Based on the selected similarity measure, this 
approach adopts dynamic programming to find out 
the best alignment sequence among the sentences 
within the given paragraph pair (Gale and Church, 
1993; Barzilay and McKeown, 2001).  

2.2 Similarity Measures 

The text similarity measures adopted in our 
experiments fall into two main categories: (a) 
string-based approaches, in which the similarity is 
calculated purely based on the sentence strings; (b) 
embedding-based approaches, in which a neural 
model is first used to convert each sentence into its 
corresponding embedding-vector, and then the 
cosine similarity between these two sentence 
embedding-vectors is taken as the sentence 
similarity. 

2.2.1 String-Based Sentence Similarity 

We adopt two different overlapping ratios: (1) 
Character ngram, which is reported as the state-of-
art on the text simplification corpus (Štajner, 
2018), and (2) token string, which is commonly 
used in sentence alignment tasks (e.g., Barzilay and 
McKeown, 2001). 
Character Ngram 
We follow Štajner et al. (2018) to calculate the 
ngram similarity based on the Character Ngram 
Similarity model with tf-idf weighting (adapted 
from McNamee and Mayfield (2004)). We 
experiment with different ngram sizes (1 to 5) and 
use NGRAM to refer to this measure. We add 
Laplace smoothing to account for those unseen 
ngrams in the test set. The final similarity is 
calculated by taking cosine similarity.  
Token String  
For calculating token-based sentence similarity, we 
use the following token overlap formula: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  |𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1∩ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2|
|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1|+|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2|   (1) 

where 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠1  is the set of tokens in the first 
sentence, 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠2  is the set of tokens in the 
second sentence, and the function | | specifies the 
cardinality of the token set. We consider two 
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different normalization mechanisms for comparing 
two tokens: (1) converting the strings into their 
associated lemmas before comparison (abbreviated 
as TOKENstring); (2) also taking synonyms as 
exactly matched lemmas during comparison 
(abbreviated as TOKENsyn). Token lemmas for 
each sentence are retrieved using an automatic 
tokenizer and lemmatizer (Qi et al., 2020). 
Synonymic relationships are taken from WordNet 
(Fellbaum, 1998). 

2.2.2 Embedding-Based Sentence Similarity 

We adopt three different approaches to calculate 
the similarity score between two sentences: (1) 
word-embedding based, where we first look up the 
word embedding-vector for every token in each 
sentence from a pretrained model and then 
combine them into their associated sentence 
embedding-vector by vector averaging (Putra and 
Tokunaga, 2017). Afterward, we calculate the 
similarity between the two obtained sentence 
embedding vectors. (2) sentence-embedding based, 
where we use a model, such as BERT (Devlin et 
al., 2019) or Sentence-BERT (Reimers and 
Gurevych, 2019), to directly embed a sentence into 
its associated sentence-embedding. We then 
calculate the similarity between these two sentence 
embedding vectors. (3) BERTScore (Zhang et al., 
2020), which uses BERT to directly generate the 
similarity value between two sentences. 
Word-embedding Similarity 
For directly retrieving the token-associated 
embedding vector from a pretrained embedding 
lookup table, we test both word2vec (Mikolov et 
al., 2013) and Glove (Pennington et al., 2014) 
embeddings. Additionally, we also test 
contextualized word embeddings retrieved from 
BERT (Devlin et al., 2019). 

Moreover, while it is common to use the [CLS] 
token yielded by the BERT encoder to represent the 
whole encoded sentence, recent works note that 
this might not be the best solution for all 
downstream tasks (Choi et al., 2021). We therefore 
additionally test the following approach: generate 
the sentence embedding via averaging the 
contextual word embeddings retrieved from the 
BERT model. 

Regardless of the way of selecting word 
embedding, we combine the associated embedding 
vectors into the corresponding sentence 
representation by taking an average over them 
(Putra and Tokunaga, 2017). The sentence 

similarity is then calculated as the cosine similarity 
between the two sentence embedding vectors.  

Among various types of word-embedding, only 
Word2vec is tested by Štajner et al. (2018). But it 
was reported not the best one in their experiments 
(the best one is character trigram in their task). 
Sentence-embedding Similarity 
Another way to generate the sentence-embedding 
is to adopt BERT to transform all its associated 
token-embeddings into it. We test two methods of 
obtaining sentence representation via BERT. First, 
we take the [CLS] token from the BERT to 
represent the whole sentence. Alternatively, we use 
Sentence-BERT (Reimers and Gurevych, 2019), 
which is an alternative method of obtaining 
sentence representation from BERT-type models, 
suggested as a better alternative for directly 
adopting [CLS] token embedding. We use 
Sentence-BERT to separately obtain a single 
embedding for each sentence in the pair. The 
sentence similarity is then calculated between two 
obtained sentence embedding vectors.  
BERTScore 
Last, we can directly generate the desired similarity 
value among two sentences by adopting the 
BERTScore (Zhang et al., 2020) approach, which 
is originally developed as an automatic evaluation 
metric for comparing various text generation 
systems. This approach first uses BERT to obtain 
the word embeddings of all input tokens. The 
pairwise similarity is then calculated for each 
possible token pair. Afterward, for each token from 
the first input sequence (i.e., the sentence from the 
“original” paragraph), BERTScore finds its 
matching token in the second sequence (i.e., the 
sentence from the “paraphrased” paragraph) via 
greedy search. Last, it calculates both precision and 
recall based on the matching result.  

As BERTScore is designed to evaluate the 
similarity between the ground truth and the 
generated text, we thought it should be also 
suitable for measuring the sentence similarity for 
our task. Typically, BERTScore will report 
precision, recall, and f1-score at the same time. We 
take each of these values to represent a specific 
sentence pair similarity measure; and we refer to 
them as BERTprec, BERTrec, and BERTf1, 
respectively.  
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3 Experiments 

Figure 2 shows the operation flow adopted in the 
experiments. Taking a pair of paraphrased 
paragraphs as input, the paragraphs are first 
preprocessed and split into sentences. Then, we use 
the sentence alignment module with the selected 
search mechanism and similarity measure to 
generate the desired sentence alignments. Those 
one-to-one sentence alignments are then extracted 
and output as the answer. 

Following subsections give details of the 
experiment setting and results. 

3.1 Dataset 

We randomly sampled 400 paragraph pairs from 
the Webis-CPC-11 corpus (out of which 7 were 
found to be incorrectly marked as paraphrases and 
removed from the evaluation data). However, for 
checking if we can automatically detect if the given 
paragraph pair is a paraphrased one, we still 
reserve them as additional data on which we can 
experiment with a method of filtering out such 
undesired input.  

As all tested similarity measures are model-
agnostic, we do not require a training set. 
Therefore, we split all the aligned paragraph pairs 
(i.e., excluding those non-paraphrased pairs) into 
the development set and the test set with a 1:7 ratio. 
As a result, we end up with 48 paragraph pairs in 
the development set and 345 paragraph pairs in the 
test set. We use the development set for selecting 
hyper-parameters such as similarity cutting 
threshold and alignment type probabilities for the 
Gale-Church algorithm (Gale and Church, 1993).  

Table 1 gives the associated dataset statistics. 
Within them, 566 1-to-1 paraphrased sentence 
pairs (77% among all aligned passage pairs) exist 

in the test set. This set of 1-to-1 sentence pairs (i.e., 
sentential paraphrases) is the desired output in our 
task and the ground truth for our evaluation.  

3.2 Pre-processing  

Because the Webis-CPC dataset only contains un-
segmented paragraphs, it must be first converted 
into a collection of sentences. We use an off-the-
shelf sentence segmenter (Qi et al., 2020) to split 
each paragraph into sentences. The output is thus 
two sets of sentences, one for each of the 
paragraphs. 

3.3 Experiment Settings 

Since the character trigram is reported as the best 
measure by Štajner et al. (2018), and no easily 
applicable code is released, we re-implement it as 
our baseline. The character ngram similarity is 
calculated as described by Štajner et al. (2018), 
including the tf-idf weighting adopted in the 

 all dev test 
#input 
paraphrased 
paragraph-pairs 

393 48 345 

#input non-
paraphrased pairs 
(dataset errors) 

7 2 5 

avg. paragraph 
length 
(#sentences) 

2.3 2.4 2.3 

paragraph range 
(# sentences) 1-7 1-6 1-7 

avg. sentence 
length (#tokens) 20.9 19.3 21.1 

# 1-1 alignments 
(ground truth) 

633 
(77%) 

67 
(77%) 

566 
(77%) 

Table 1: Dataset Statistics (without non-
paraphrase cases). #Min-#Max specifies the 
range. 
 

 

Figure 2: Operation flow for obtaining one-to-one sentence alignment within paraphrased paragraph pairs.  
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original work. We do not test our implementation 
on the original data adopted by them, as they only 
used human evaluation, without indicating which 
dataset was used for evaluation. Therefore, directly 
verifying our implementation with their results is 
impossible.  

When experimenting with various search 
mechanisms, we additionally impose similarity 
score thresholding, which filters out those obtained 
1-1 sentence pairs with their similarities below the 
specified threshold. The threshold value is selected 
for each similarity measure separately, based on the 
development set results. 

For the approach of adopting [CLS] for sentence 
representation, we use a pretrained BERT-base 
model (Devlin et al., 2019). For the Sentence-
BERT approach, we test three different pretrained 
versions released by an open resource3 :  BERT 
(Devlin et al., 2019; abbreviated as SBERTbert), 
ALBERT-mini (Lan et al., 2020; abbreviated as 
SBERTalbert), and MiniLM (Wang et al., 2020; 
abbreviated as SBERTmini). Among them, 
SBERTbert is trained with various Natural 
Language Inference data sets; in contrast, the last 
two versions are trained on various paraphrasing 

3 https://huggingface.co/sentence-transformers 
4 The list of specific datasets used was not published by the 
open-source authors. 

datasets 4 . The pre-trained model used for 
calculating the BERTScore is ROBERTA-Large 
(Liu et al., 2019).5  

3.4 Various Experiments 

We measure precision, recall, and F1-score for the 
two alignment strategies with various similarity 
measures. Furthermore, we use the McNemar test 
(Dietterich, 1998) to check if a given configuration 
(i.e., the adopted search mechanism and the 
specified similarity measure) yields significantly 
different results from the baseline (taking p≤0.05 
as the significance test threshold).  

We test the following measures: (A) String-
based similarities: including character ngram 
similarity with n from 1 to 5 (NGRAM), and token 
overlap similarity calculated with either token 
strings (TOKENstring) or token synonyms 
(TOKENsyn); (B) Embedding-based similarities: 
(1) word embedding-based similarities calculated 
with word2vec (W2V), Glove (GLOVE) and 
BERTbase (BERTword) embeddings; (2) sentence 
embedding-based similarity: (i) using [CLS] token 
yielded by BERTbase model (BERTcls), and (ii) 

5 https://github.com/Tiiiger/bert_score 

measure % on the test set Best 
TH prec rec F1 

NGRAM(n=1)*  77.8 82.2 79.9 0.3 
NGRAM(n=2)* 77.8 82.2 79.9 0.3 
NGRAM(n=3) 79.9 72.5 76.1 0.3 
NGRAM(n=4) 77.8 82.2 79.9 0.3 
NGRAM(n=5) 77.8 82.2 79.9 0.3 
TOKENstring* 83.7 73.1 78.1 0.2 

TOKENsyn 77.1 71.5 74.2 0.1 
W2V 79.7 74.5 77.0 0.8 

GLOVE 73.5 81.2 77.1 0.95 
BERTword* 78.5 87.0 82.5 0.75 

BERTcls 81.9 67.9 74.3 0.9 
SBERTbert 75.2 90.8 82.3 0.6 

SBERTalbert 82.9 70.7 76.9 0.35 
SBERTmini* 78.4 85.2 81.6 0.6 
BERTprec* 86.5 72.9 79.1 0.9 
BERTrec* 83.5 74.9 80.4 0.9 
BERTf1 86.8 74.9 80.4 0.9 

Table 2: Alignment results for the Uni-directional 
Best Match strategy across all similarity measures. 
TH is the threshold value, selected on the 
development set based on the f1 value for each 
measure. The asterisk * marks the metrics that 
outperforms NGRAM baseline (n=3) with p ≤ 0.05. 

measure % on the test set Best 
TH prec rec F1 

NGRAM(n=1)  80.5 81.8 81.1 0.3 
NGRAM(n=2) 80.5 81.8 81.1 0.3 
NGRAM(n=3) 78.9 87.0 82.7 0.1 
NGRAM(n=4) 80.5 81.8 81.1 0.3 
NGRAM(n=5) 80.5 81.8 81.1 0.3 
TOKENstring 84.7 73.1 78.5 0.2 
TOKENsyn 78.6 81.8 80.2 0.05 

W2V 81.1 87.6 84.2 0.6 
GLOVE 79.7 78.0 78.8 0.95 

BERTword 82.3 86.4 84.3 0.75 
BERTcls 86.2 66.5 75.1 0.9 

SBERTbert 79.1 88.6 83.6 0.6 
SBERTalbert 80.6 89.8 84.9 0.25 
SBERTmini* 80.7 90.2 85.1 0.25 

BERTprec 80.9 88.2 84.4 0.85 
BERTrec 79.7 88.2 83.7 0.85 
BERTf1 79.9 90.8 85.0 0.9 

Table 3: Alignment results for the Bi-directional 
Best Match strategy across all similarity measures. 
TH is the threshold value, selected on the 
development set based on the F1 value for each 
measure. The asterisk * marks the metrics that 
outperforms NGRAM baseline (n=3) with p ≤ 0.05.  
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Sentence-BERT embeddings with three different 
pretraining models (SBERTbert, SBERTalbert, and 
SBERTmini); (C) BERTScore with precision 
(BERTprec), recall (BERTrec) and F1-score 
(BERTf1). 

Tables 2-4 compare all similarity measures 
under the Best Match (Uni- and Bi-directional, 
separately) strategy and the Sequence Match 
strategy, respectively. For each measure, we only 
report the results with the best threshold value, 
which is selected on the development set based on 
the F1 value. The threshold for each specific 
similarity measure is different and is noted in the 
corresponding table. Measures that outperform the 
character trigram baseline in a significant manner 
are marked with the asterisk *.  

Overall, comparing the best result of each 
approach, the sequence match approach (with the 
best F1-score equaling 88.8%) outperforms both 
best match approaches (the best F1-score of 85.1% 
is from the bi-directional mode). We conjecture the 
sequence match performs the best as it additionally 
considers the adjacency and dependency 
information within sentences during matching. 

Moreover, the Uni-directional Best Match 
approach performed the worst (only with 82.5% 
best F1) as expected. Since our data is symmetric, 
the matching results would be more reliable if the 
alignment is considered from both directions.  

Furthermore, the best similarity measure varies 
under different search mechanisms. In the 
sequence match approach, three BERT-type 
measures (i.e., SBERTbert (88.8% F1), BERTrec 
(88.7% F1), and BERTf1 (88.7% F1)) significantly 
outperform the baseline. The SentenceBERT 
measure performs best, surpassing the character-
trigram baseline method by 1.9% (88.8% vs. 
86.9%) because it is trained to encode the overall 
sentence meaning, not the specific meaning of 
individual tokens, which fits our task well. 
Similarly, BERTScore also delivers good results 
because it is directly trained to measure the 
similarity between two sequences. 

On the other hand, in the bi-directional best 
match approach, the best result is again obtained 
by the Sentence-BERT measure (SBERTmini) 
with the best F1-score 85.1%, significantly 
outperforming the character ngram similarity 
measure at 82.7%. Also, both SBERTalbert and 
BERTf1 measures outperform the baseline with 
p<0.06.  We believe that the above reasons given 
for the sequence match approach also apply here.  

Last, in the uni-directional best match approach, 
several tested measures significantly outperform 
the baseline (76.1%), including BERTword 
(82.5%), SBERTbert (82.3%), SBERTmini 
(81.6%), BERTf1(80.4%), NGRAM with n≠3 
(79.9%), BERTrec (79.7%), BERTprec (79.1%) 
and TOKENstring (78.1%). The measures that 
perform best in this search mechanism are again 
mostly those that encode the sentence as a whole, 
similar to other search mechanisms.  

measure % on the test set Best 
TH prec rec F1 

NGRAM(n=1)*  89.1 83.4 86.1 0.2 
NGRAM(n=2)* 89.1 83.4 86.1 0.2 
NGRAM(n=3) 89.7 84.2 86.9 0.1 

NGRAM(n=4)* 89.1 83.4 86.1 0.2 
NGRAM(n=5)* 89.1 83.4 86.1 0.2 

TOKENstring 92.7 81.6 86.8 0.15 
TOKENsyn 86.2 86.9 86.3 0 

W2V 87.6 87.6 87.6 0.45 
GLOVE 87.3 85.2 86.2 0.9 

BERTword 91.5 82.2 86.6 0.75 
BERTcls 92.3 81.4 86.5 0.85 

SBERTbert* 89.8 87.8 88.8 0.6 
SBERTalbert 91.1 85.8 88.3 0.25 
SBERTmini 87.8 86.8 87.3 0.25 
BERTprec 90.0 86.8 88.4 0.85 
BERTrec* 89.9 87.6 88.7 0.85 
BERTf1* 90.1 87.4 88.7 0.85 

Table 4: Alignment results for the Sequence Match 
strategy across all similarity measures. TH is the 
threshold value, selected from the development set 
based on the F1 value for each measure. The 
asterisk * marks the metrics that outperforms 
NGRAM baseline (n=3) with p ≤ 0.05.  
 

measure mean  L-CI 
(0.95) #pairs  

NGRAM(n=3) 0.547 0.530 5 
TOKENstring 0.221 0.214 4 
TOKENsyn 0.141 0.136 4 
SBERTbert 0.541 0.522 3 

SBERTalbert 0.411 0.391 3 
SBERTmini* 0.339 0.321 6 
BERTprec* 0.914 0.911 7 

BERTrec 0.917 0.914 5 
BERTf1* 0.915 0.913 5 

Table 5: Results of filtering out non-paraphrased 
paragraph pairs based on the 0.95 confidence 
interval. Mean is the mean similarity value for all 
(393) paraphrased paragraph pairs; L-CI is the left 
boundary of the Confidence Interval, and #pairs is 
the number of non-paraphrased pairs that fall 
outside the confidence interval (out of 7). Results 
with p ≤ 0.05 are marked with the asterisk *. 
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We additionally note that in both versions of the 
Best Match approach, BERTword is significantly 
better (84.3% and 82.5% for bi- and uni-
directional, respectively) than that is calculated 
with the [CLS] token embedding (BERTcls, 
75.1%, and 74.3%). This is in line with the 
observation from Choi et al. (2021), who noted that 
interpreting the [CLS] token embedding as the 
sentence representation might be inferior to 
combining the individual sub-word embeddings 
obtained from BERT. 

3.5 Exploring Features for Non-
paraphrased Paragraph-pair Detection 

Since the Webis-CPC-11 paraphrasing dataset is 
found to contain some non-paraphrased paragraph 
pairs (a total of 7 pairs are found among 400 pairs 
sampled), we also want to check if it is possible to 
automatically detect those outliers. As the 
paragraph is just a longer passage in comparison 
with the sentence, we expect that the measures 
adopted to calculate the sentence similarity could 
be also applied to evaluate the paragraph similarity.  
We thus further test whether the measures adopted 
for sentence alignment are discriminative enough 
to filter out those incorrectly annotated paragraph 
pairs (i.e., non-paraphrased pairs found).  

We calculate paragraph similarity via the same 
approaches conducted for evaluating the sentence 
similarity and test some similarity measures which 
perform better for the sentence case (including 
Sentence-BERT, BERTScore, etc.). We fit the 
similarity values from all paraphrased paragraph 
pairs for each measure with specific normal 
distribution and then calculate its 0.95 confidence 
interval to check whether the non-paraphrased 
paragraphs can be detected as outliers outside this 
interval.  

Table 5 shows the left boundary value of the 
0.95 Confidence Interval as well as the number of 
non-paraphrased paragraph pairs (out of 7 in the 
data) that fall below this interval. We found that all 
non-paraphrased paragraphs can be detected as 
outliers and filtered out using BERTprec (with the 
nearest outlier sitting at p=0.01). It thus confirms 
the feasibility of adopting BERTprec for 
automatically filtering out those annotation errors. 

4 Error Analysis  

We analyzed 50 errors generated by our best 
approach (i.e., Sequence Match with SBERTmini), 
and categorized them based on their associated 

error sources: (1) mistaking 1-n mapping for 1-1 
(46%); (2) associated with incorrect sentence 
boundary (26%), in which the sentences are split 
incorrectly before conducting alignment (e.g., a 
sentence is incorrectly split into two sequences by 
the sentence segmenter); (3) paraphrased sentences 
take different sequence-orders within two given 
paragraphs (16%); (4) others (12%), of which it is 
difficult to attribute each error to a specific reason. 

The first error category, incorrectly marking 1-n 
alignment as 1-1, is likely due to two reasons. First, 
those proposed similarity measures are still 
incapable of truly reflecting the semantic similarity 
between two sentences when they are paraphrased 
in an abstract way; as a result, they might 
incorrectly convert a golden 1-n mapping into a 1-
1 mapping. Second, because the alignment is 
selected based on the sentence similarity and the 
probability of each alignment type on the 
development set, the model has a preference for 
extracting 1-1 alignments as they are most 
common in the dataset (cf. Table 1).  

The second error category (i.e., with incorrect 
sentence boundary) occurs when the pre-
processing module incorrectly split the sentences 
within one of the input paragraphs. Finally, the last 
type of error is caused by the sequence search 
mechanism, which assumes all paraphrased 
passage pairs follow the same relative order within 
each paragraph. If this assumption is violated in the 
given paragraph pair, it will always return an 
incorrect answer. 

5 Related Work  

Sentence Alignment Mechanisms  
Works on sentence alignment started with bilingual 
data (Brown et al., 1991; Gale and Church, 1993) 
adopted to train the statistical machine translation 
model. Monolingual sentence alignment appeared 
much later. Most of them are conducted on 
comparable corpora for developing text-to-text 
generation systems (e.g., Barzilay and Elhadad, 
2003; Nelken and Shieber, 2006). Subsequently, it 
is also applied in the text simplification task (e.g., 
Hwang et al., 2015). 

Based on the adopted search mechanism, both 
mono- and bilingual sentence alignment 
techniques can be split into greedy search (e.g., 
Brown et al., 1991; Hwang et al., 2015; Štajner et 
al., 2018) or sequence search (e.g., Gale and 
Church, 1993, Barzilay and McKeown, 2001). 
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Those previously reported monolingual 
alignment approaches are mainly model-agnostic, 
and adopt various similarity measures (Hwang et 
al., 2015; Štajner et al., 2018), as there is no need 
to additionally prepare annotated training data. As 
the development of NN progressed, model-
dependent approaches (Huang et al., 2018; Jiang et 
al., 2020) also emerge, as they can deliver better 
performance with the cost of annotating a training 
dataset. 
Sentence Similarity Measures  
The early adopted sentence similarity measures are 
mostly string-based, including sentence-level tf-idf 
(Nelken and Shieber, 2006) or shared tokens 
(Barzilay and McKeown, 2001; Ganitkevitch et al., 
2013). Later, to increase the possibility of 
recognizing those non-identical strings with 
similar semantic meanings, new methods are 
introduced: such as Word-Net similarity (e.g., 
Hatzivassiloglou et al., 1999), which use external 
resources to augment the matching scope by 
looking up their synsets, and WikNet similarity 
(Hwang et al., 2015), which is a semantic similarity 
based on Wiktionary.  

Those embedding-based approaches appeared 
in literature only recently, using latent variable 
models (Guo and Diab, 2012) or neural models 
(Mueller and Thyagaraja, 2016; Neculoiu et al., 
2016; Štajner et al., 2018).  

6 Conclusions  

We have presented the first comparison among 
various model-agnostic similarity measures used 
for aligning sentences among paraphrased 
paragraphs. For most cases, we find that 
embedding-based similarity measures outperform 
the string-based approaches (including the 
previous SOTA character trigram approach tested 
on the TS dataset), and sentence-embedding-based 
methods are preferable to the word-embedding-
based methods for most search mechanisms except 
the uni-directional greedy matching. 

Additionally, our results have shown that in 
calculating the similarity for sentence alignment, 
word vector averaging is better than adopting the 
[CLS] token when retrieving a representation of a 
whole sentence from a BERT-based model. 
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